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Two-dimensional incompressible magneto- 
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SUMMARY 
An analysis has been made of the two-dimensional flow of an 

incompressible constant-conductivity fluid through an elliptically 
shaped solenoid containing a constant magnetic field directed 
normal to the flow plane. The effect of both Hall current and 
ion slip has been included in the generalized Ohm's law used for 
the fluid. The analysis is based on a perturbation procedure in 
two parameters, one being the magnetic Reynolds number R, 
and the other the ratio S of magnetic force per unit area to dynamic 
pressure. Calculations have been carried to the first order in each 
parameter, and closed-form analytic, expressions have been 
obtained for the force and moment on the solenoid, the current 
density, stream function, magnetic field and other pertinent 
physical quantities. 

It was found that, to the zeroth order, there is a force but no 
moment on the solenoid. To  the first order in S, where the flow 
field is modified but the magnetic field is not, there is a moment 
and a force, the latter being anti-parallel to the zeroth order force. 
To the first order in R,, where the magnetic field is modified but 
the flow field is not, there is a moment but no force. Thus, to the 
first order the lift to drag ratio is the same as in the zeroth order. 
Graphs which illustrate some of the effects of angle of attack, 
finepess ratio of the ellipse, Hall current and ion slip, on the forces 
and moments are presented. 

SYMBOLS 
A, constant in Fourier expansion C, 

a, b semi-major and semi-minor 
of (a$i/a*l),, see (4.7), C 

axes of ellipse, D 
B magnetic field vector, d 

ellipse (dimensional), E 
Bo uniform magnetic field inside E 

C, constant in Fourier expansion 
of (a+j/aq)e, see (4.71, e 

F.M. 

contour of elliptical solenoid, 
value of [ on elliptical 
solenoid, 

see (3.2), 
electric field vector, 
complete elliptic integral of 
the second kind, 
electronic charge, 

drag, 

2 N  
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F force, T 
h fineness ratio b/a of ellipse U 
I discontinuous factor which 

is unity inside ellipse, zero - Vo 
outside ellipse, VO 

E. Petschek 

temperature, 
constant vector, defined 
below (5.9), 
vector, see (4.32), 
constant vector, defined 
below (5.9), 

k 

k 
L 
9 
1 

M 

m 
n 

N 

P 
P 
q 
q0 

Qjk 

R m  

4 

R 
r 

S 

S 

A 
e 

j current density vector, 
K, constant in stream function w,, W, constants in vorticity jump, 

#’, see (4.28), see (4.20c), 
K, K,, K,, K, constants defined x,y coordinate along and normal 

below (4.32 b) and (5.9), to the major axis of the 
unit vector normal to flow ellipse, 
plane, forming third vector z complex position vector, 

Boltzmann’s constant, c( angle of attack, measured 
lift, between major axes of ellipse 
reference length, and free stream, see figure 1, 
coordinate along free-stream c(, 8, y,  6 constants in the solution 

of a right-handed system, x = x-tiy, 

direction, 
moment about centre of 
ellipse, 
particle mass, 
coordinate perpendicular to 
free stream direction, 
wake half-width, see (4.19), 
number density of j species, 
perimeter of ellipse, 
fluid pressure, 
velocity vector, 
free-stream speed (dimen- 
sional), 
elastic collision cross-section 
for collision between species 
j and k ,  
magnetic Reynolds number 

moment arm, 
position vector from centre 
of ellipse, 
dimensionless parameter 

arc length along a contour, 

P.-LP%l0, 

u=qB0)2/f qo, 

Subscr$ts 
applied, E 
on the elliptical contour, i 

. _  
of Laplace’s equation (with 
various sub- and super- 
scripts), 
see (4.7a), 
eccentricity of ellipse, 

friction coefficient between 
species j and K, see (A 3), 

angular elliptic coordinate, 
polar angle in (x,y)-plane, 
Hall coefficient, see (A 2 b), 
ion slip coefficient, see (A 2 c), 
permeability, 
radial elliptic coordinate, 
fluid density (dimensional), 
electrical conductivity of fluid 
(dimensional), 
electrostatic potential, 

stream function, 

vorticity vector, S2 = V x q. 

1/( 1 - h2),  

S + h  

E = -V$, 

q = -kx V*, 

electrons, 
inside ellipse, 
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Subscripts-continued. 

ions, W in wake, 
neutral atoms or molecules, x,y components of vector in x-, 
components of vector in I-, 
n-directions, 1 unit vector, 

y-directions, 

outside ellipse, V outer normal to contour. 

I 
N 
4 n 

0 

0 
I 

zero order, 
first order in S, 

Superscripts 

a first order in Rm, 
* dimensional quantity. 

1. INTRODUCTION 
The possibility that magnetohydrodynamic forces may be used 

advantageously in high speed flight has recently been suggested 
(Kantrowitz 1953; Patrick 1956; Rosa 1956). At the gas temperatures 
encountered at speeds corresponding to a re-entering satellite, air becomes 
a reasonably good conductor of electricity (Lamb & Lin 1957). If this 
air is allowed to flow through a magnetic field, drag, lift, or control forces 
may be obtained. It can be shown, on the basis of very rough order-of- 
magnitude arguments, that it may be possible to obtain larger forces with 
less heat transfer by using magnetohydrodynamic forces than would be 
obtained by the conventional method of using gas pressure acting on solid 
surfaces. 

In order to make a more precise evaluation of the possibilities of 
magnetohydrodynamics in flight, it is necessary to develop methods for 
treating magnetohydrodynamic flow problems. The work reported here 
is intended as a step in this direction. Its aim was to  analyse a physically 
realistic magnetohydrodynamic flow problem which maintains some of the 
features of hypersonic flight. However, some of the simplifications that 
have.been introduced to obtain analytical solutions are such that the direct 
application of the results to flight is not possible. In  particular, we will 
assume incompressible flow and uniform electrical conductivity in the 
entire flow field. While this is a case which is physically realizable in either 
subsonic flows of hot gas or liquid metal flows, it is not a good approximation 
to hypersonic flight. Nevertheless, it is hoped that the understanding 
gained will lead towards the solution of realistic flight problems. 

For magnetohydrodynamic calculations associated with astrophysical 
conditions or with the conditions obtained in highly pinched discharges, 
the magnetic Reynolds number (see (2.9 b)) is usually assumed to be very 
large. This is frequently stated more crudely as the assumption of infinite 
conductivity. This is justified in astrophysics because of the large lengths 
involved and in the pinched discharges because of the high electrical 
conductivity which is achieved at very high temperatures (-J 106"K). 

2 N 2  
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For large magnetic Reynolds numbers the flow and the magnetic field are 
very closely coupled and the field lines may be considered almost rigidly 
attached to the fluid particles. The value of the magnetic Reynolds number 
that can be expected in flight is, however, of the order of unity or less. 
The magnetic field is then only slightly distorted by the flow. The general 
analysis in this paper is oriented towards small magnetic Reynolds numbers 
and the final calculation is a perturbation calculation based, in part, on an 
expansion in powers of the magnetic Reynolds number. 

In the presence of a magnetic field, the relation between the current 
and applied electric field-Ohm’s law-in a gas is considerably more complex 
than it is in a solid or liquid conductor. At low densities and high magnetic 
field strengths the electrons perform many revolutions in their helical orbits 
in the magnetic field between collisions. Under these conditions the current 
may be reduced and is not parallel to the electric field, as seen in coordinates 
moving with the gas. At still lower densities, and in a partially ionized gas, 
an appreciable difference between the mean veIocity of the ions and the gas 
velocity arises. This results in a reduction of the effective conductivity 
of the gas. Both of these effects will probably be important under the 
conditions of interest for flight applications. The generalized form of 
Ohm’s law utilized in this paper is valid for general values of the parameters 
describing these two effects and is restricted only by the assumption that the 
degree of ionization is small. 

A type of configuration which might be of interest in hypersonic flight 
is an extended magnetic field such as that produced by a large ring current 
surrounding a relatively small body. Such a configuration would produce 
a drag of the order of magnitude of the dynamic pressure acting on an area 
comparable with the area enclosed by the ring. The area of solid surface 
exposed to high heat transfer rates is, however, comparatively small. In  
such a case the flow interacts principally with the magnetic field, and the 
disturbance due to  the presence of the body and the field coils may be 
neglected to a first approximation. 

In  the present paper this type of configuration is idealized by considering 
a two-dimensional flow perpendicular to the axis of an infinitely long solenoid 
(figure 1). The solenoid is of elliptical cross-section with its major axis 
at an angle cc to the flow direction. It has a uniform magnetic field normal 
t o  the flow plane inside the ellipse, and no field outside. We assume that 
the solenoid itself is completely transparent to the flow ; that is, the current- 
carrying wires are thin enough not to affect the flow. The only interaction 
with the fluid is that caused by the magnetic field inside the solenoid. To  
further simplify the problem, we take the fluid to be incompressible, with 
constant conductivity. 

The method of solution of the problem is based on a perturbation in 
two parameters. One, as mentioned above, is the magnetic Reynolds 
number which describes the perturbation of the magnetic field about the 
undisturbed field of the solenoid. The other is a parameter which describes 
the perturbation of the flow about the uniform flow which would exist 
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in the absence of a magnetic field. This second perturbation procedure 
is similar to thin-aerofoil theory, in that it is a small disturbance of a uniform 
flow. The magnetohydrodynamic case is, however, not restricted to  slender 
cross-sections of the solenoid since for weak magnetic fields the effect on 
the flow field will be small regardless of the shape. In connection with the 
remark about aerofoil theory it might be noted that, from an aeronautical 
point of view, the solenoid behaves as a ' magnetic aerofoil ', disturbing the 
flow and producing a force and moment on itself, as does a solid wing. 

Figure 1. Notation and coordinate systems. 

The first-order changes in both the flow and the magnetic field have 
been computed. The resulting forces and moments on the solenoid are also 
determined by considering the corresponding forces and moments due to 
the magnetic body forces on thi: fluid. 

2. BASIC EQUATIONS 

The basic equations for the steady motion (with velocity q*) of an 
incompressible fluid of density p and constant conductivity u in the presence 
of a magnetic field B* and electric field E* are a combination of the Euler, 
continuity, and Maxwell equations. In rationalized mks. units they are 

p(q*.V)q*+V*p*-j*xB*=O, V*.q* = 0 ,  (2.1a,b) 

V* x E* = 0, (2.2 a, b, c) 

where p is the magnetic permeability and j* the current density. 
Equations (2.1 a, b) are the usual incompressible flow equations except 

V* . B* = 0, V* x B* = pj*, 
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for the presence of the term j* x B" which represents the body force 
exerted by the electromagnetic field on the fluid. (The remaining Maxwell 
equation which relates the divergence of the electric field to the net charge 
density may in all cases of magnetohydrodynamic interest be replaced by 
the quasi-neutrality condition which states that the electron and ion 
densities are equal at all points in the fluid*. This condition enters into 
the derivation of the generalized Ohm's law for the gas and is not required 
directly in the macroscopic equation.) For a partially ionized gas with a 
low degree of ionization, the current density is related to the electromagnetic 
and velocity fields by a generalized Ohm's law of the form (see Appendix A) 

j* = a[E" + q* x B* - K*j* x B* +X*(j* x B*) x B*]. (2.3 1 
We will work with a dimensionless form of the basic equations obtained 

by introducing the following dimensionless variables : 

Here qo and Bo are the free stream velocity and the constant field inside 
the solenoid, respectively, The coordinates are also made dimensionless 
with a characteristic length 2. Then (2.1), (2.2) and (2.3) become 

( q . V ) q = i V q 2 - q x  a =  - V p + S j x B ,  V .q=O,  (2.5a,b) 

V x E = O ,  V . B = O ,  V x B = R , j ,  (2.6 a, b, c )  

j = E + q x  B-Kjx B+h(jx B ) x  B (2.7) 
where 51 E V x q and the dimensionless parameters K and h are defined by 

K = K*UB~, A = X*U(BO)~. (2.8 a, b) 

The two dimensionless numbers S and R, which appear are defined by 

SE UL?'(B~)~ , Rm=puqo=P. 
Pqo 

(2.9 a, b) 

R, is the magnetic Reynolds number and S is a parameter which represents 
the ratio of electromagnetic body force per unit area to fluid dynamic 
pressure. Equation ( 2 . 6 ~ )  shows that the magnitude of R, determines 
the magnitude of the changes in the magnetic field due to the currents in 
the fluid. 

The parameters that appear in the non-dimensional form of the equation 
depend, of course, on the method of non-dimensionalization. The non- 
dimensionalization of most of the parameters is fairly straightforward. 
There is, however, some freedom as far as the current is concerned. For 
small R, the non-dimensional current defined by (2.4e) will be of the 
order of unity. However, for large R, the flow and magnetic field adjust 
themselves so that the current is much less than aqoBo. In  this case the 
magnetic field can change by its own order of magnitude in the characteristic 
length. The current should, therefore, be non-dimensionalized with respect 

* For a discussion of this point see, for example, Cowling (1953). 
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to the magnetic field gradient B0/@. If this is done the parameters entering 
into the non-dimensional equations are R, and SIR,. It would seem, 
therefore, that the appropriate parameter for measuring the electro- 
magnetic forces is SIR, for large Rm7 and S for small R,,. The parameter 
SIR, is frequently found in the literature because of the preponderance of 
interest in the large-R, case. In  the present case of small R,, we will use S. 

Equation (2.7) can be solved for j by expanding the triple vector product, 
formingj x B, and then substituting the resulting expression back into (2.7). 
This leads to 

j =  (1+XB2)(E+qxB)-K(E+qx B)x  B + [ K ~ + ~ ( ~ + A B ~ ) ] [ ( E + ~ x B ) . B ] B  
(1 + AB2)2 + K ~ B ~  

(2.10) 

as the generalized Ohm's law with Hall current and ion slip. 
In the present two-dimensional case, where the applied magnetic field 

is normal to the plane of the flow we may also take the induced field to be 
normal, so that (2.6 b) is automatically satisfied. Then since q is in the 
plane, the last term in j vanishes. Furthermore, in view of (2.5 b) and 
(2.6 a) we may introduce a stream function and an electrostatic potential 
by the relations 

q s V x k $ e V $ x k ,  E r  -V+, (2.11 a, b) 

where k is the unit vector normal to the flow plane. If we also introduce B, 
the magnitude of the magnetic field, by 

B = kB, 
then the equation for j becomes 

(2.12) 

(2.13) j =  - ( 1 +XB2)(V++BV$)-~B(V++BV$) x k 
(1 + XB2)2 + K ~ B ~  

In  view of (2.12) we also find from ( 2 . 6 ~ )  that 

V x Bk = VBx k = R,j, (2.14) 

V . j  = 0. (2.15) 
The nature of the body force in the present two-dimensional case is 

of interest. Let us break up the magnetic field into two parts. Let B, 
be the applied field produced by applied currents, as for example the 
constant field inside the ellipse in the present problem. Let BI be the 
induced field, which may be looked on as produced by the induced currents 
according to (2.14). The body force on the fluid involves only the induced 
currents, since they are the ones flowing in the gas. Therefore, the body 

* This equation could, of course, also be derived directly from charge conserva- 
tion. Sources and sinks for gas current could exist in the flow if electrodes were 
introduced. If the current in both the gas and the electrodes is considered it must be 
divergence free. However, the gas current itself would appear to have sources or 
sinks at the electrode surfaces. In this paper we will not consider electrodes, although 
the work here could easily be extended to cover this case. 

and of course, in general, from (2.6c)* 
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force may be written with the help of (2.12) and (2.14) as 
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( V X B , ) ~  (BI+BA)/Rm = -VB~/2Rm-BAVBI/Rm. 

This shows that in the two-dimensional case the body force due to the 
induced field is the gradient of a scalar, and wherever the applied field 
is constant, the whole body force is such a gradient. 

The Euler equation (2.5 a) becomes 

( q . V ) q  = + V q 2 - q x  B =  -V(p+SB~/2Rm)-SB,VB,/Rm. (2.16a) 

Thus, in the regions where B, is a constant, we have the usual hydrodynamic 
case of body forces derivable from a potential SB,(B, + iBz)/Rm, with a 
Bernoulli constant along each streamline. Further by taking the curl of 
(2.16a), with due regard for the two-dimensional nature of the flow, we 
find that 

( q .  V)  8 = 0, where B, = constant. (2.16b) 

Here we have recognized that B has only one component and put 

S ~ Z V X ~ E Q ~ ,  S 2 =  -V2t,h. (2.17 a, b) 

The last relation, coming from (2.11 a), is the usual one between the 
vorticity and stream function in plane incompressible flow. Equation (2.16 b) 
expresses the familiar fact that the vorticity is constant along streamlines. 
I n  the present case, it holds everywhere except at the ellipse C,, across which 
B, is discontinuous, so the last term on the right of (2.16a) cannot be 
expressed as a gradient. Therefore, vorticity is generated only on C,, 
where B, jumps, and nowhere else in the flow. 

T o  determine how much vorticity is generated on C,, consider for the 
moment an applied field B, which varies rapidly but continuously near C,. 
Rewrite the last term on the right of (2.16a) in its original form Sj x B, ; 
wherej is understood to be the induced current. Then take the curl and 
so obtain 

V x [ ( q x B ) + S ( j x B , ) ]  = O .  

Since the tangential component of a curl-free vector must be continuous 
across a surface, the jump in vorticity across the surface is defined by 
requiring that the tangential component of 

q x B+S(j x B,) (2.18) 
be continuous. 

The other boundary conditions on C, may be obtained by similar 
considerations. Since the electric field is also curl-free its tangential 
component must also be continuous. The induced current density in the 
gas does not become infinite anywhere. The induced magnetic field is 
therefore continuous everywhere. In other words the jump in total magnetic 
field at C, is just equal to the jump in the applied field. The finite current 
also implies the absence of infinite forces. The velocity and pressure are, 
therefore, also continuous. In  the absence of electrodes the gas current 
is everywhere divergence-free and, therefore, the normal component of 
current is continuous on C,. 
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In summary, then, the problem of determining the hydrodynamic and 
electromagnetic fields consists of solving 

V . j = O ,  VBxk=R,j ,  ( q . V ) Q = O ,  

both inside and outside C,. On C,, where the applied field has a discontinuity, 
but there is no body, we require: 

q, j,, &$/as, BI are continuous on C,, (2.19 a) 

where denotes differentiation along the contour and v the outer normal 
to C,. Far from C,, the induced fields must vanish, except possibly the 
velocity in the ' wake ' of the contour. Let 1, be a unit vector in the direction 
of the free stream flow. Then 

(q-l,, j, E, B,) -+ 0 at infinity, except in the wake. (2.19 b) 

The remaining condition defines the vorticity jump on C, by continuity 
of the tangential component of (2.18), 

Qo - Qi = S(jy/qy)B&4i on c,, (2.20) 

where the subscript i means inside C,. To complete the formulation, one 
must use the relations (2.11), (2.13), and (2.17) between Q, $, 4 and j. 

In  
order to obtain approximate analytical solutions a perturbation technique 
will be used, valid for small values of the dimensionless parameters S and R,. 

The quantities of main interest are the electromagnetic force and 
moment on the solenoid, which are equal and opposite to those on the 
fluid. Let F" and M* be the force and moment on the solenoid, which 
arise solely from the body force j x B on the fluid. Then 

The set of equations (2.14)-(2.16) are non-linear in I,LI and B. 

(2.21) 

where the area integrals are taken over the whole plane and r is the 
dimensionless position vector of a point so that M is taken about the 
origin of coordinates. By analogy with wing-section theory, one might 
be interested in the drag amd lift of the solenoid, that is, the forces parallel 
and perpendicular to the stream direction, respectively. These may be 
defined as 

= F.(kxl , )  = F.nl, L" 
upoLF2 ( Bo)2 

L =  

(2.23) 

(2.24) 

where 1, and n, are unit vectors along and normal to the stream direction, 
as shown in figure 1. 
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3. PERTURBATION EXPANSION 

All dependent variables are expanded in a double power series in S 
and R,. Zero-order terms represent the impressed fluid motion and 
magnetic field. In  the present system of units, the zero-order velocity is 
a unit vector 1, in the direction of the free stream. The impressed field 
is normal to the flow plane and has magnitude unity inside the elliptical 
contour C, and zero outside it. The symbol I will be used for this 
discontinuous quantity. Then we may write 

q = + =  k x q =  +'+ +IS+ @R,+ ..., 
i1+ q'S+ q'R,+ ..., 

8 = V x q =  Q'S+ QuRm + ..., 
I + B'S+ BURm+ ..., 

i = jO+ j'S+ j'Rm+ ..., 
+ =  + O +  @ S +  p R , +  ..., 
F = F o +  F'S+ FURm+ ..., 

M = Mo+M'S+MuRm+ ... . 

B = 

If these expansions are inserted into (2.13)-(2.16) and (2.18)-(2.22) 
and terms containing equal powers of S and R, equated separately, we 
obtain the following results. 

Zero order 

9 (3.1a) 
j O =  - (1 + h12)(V+0 + I V p )  - K I (  V+" + IV$O) x k 

d 
V .jO = - (1 +AIz)(Vz+o +IV2+O)/d = 0.  (3.1 b) 

Here d is a constant which has different values inside and outside C,. I t  is 
defined by 

d = (1 + h12)2 + K 2 1 ?  ( 3 4  
j: ,  are continuous on C,, (3.1 c) 

(3.1 d) 

Mo = //Ik(r.jo) dA = k / J  (r.jy) dA. (3.1 e) 
i 

First order in S 
Here we first use (2.14) to obtain 

VB' x k = 0. 
Since B' is independent of the variable normal to the plane, this indicates 
that B' is at most a constant. Since B' is continuous on C, and vanishes 
at infinity, it must vanish everywhere. 

With B' = 0 we then have 

, (3.3 a) 
j '= - (  1 + XI2)( 04' + IV+') - K I (  V# + lo+') x k 

d 
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V .j' = - (1 + XI2)( V24' + IV2$')/d = 0, (3.3 b) 

q', j i ,  a#las are continuous on C,, (3.3 d) 

and Ql - Qi = j : / l lv ,  (3.3 e) 
where the subscripts o, i denote the regions outside and inside C,, respectively. 

(ll. V)Q' = V x (jo x kl)  = I(k. V)jo - IkV. j0 = 0. (3.3 c) 

F' = - JJ (j' x kf) dA = k x JJ j; dA, 
i 

M' = 11 Ik(r .j') dA = k 11 (r . j ; )  dA.  
1: 

(3.3 f )  

(3-3 g) 

First order in Rm 
Here we first consider (2.16) and (2.20) which show that 

(ll. V)Q.= 0, 
Q'-Qa 0 .% = 0 on C,. 

Thus Q' is constant along zero-order stream lines with no jump at C,. 
Since Qa is zero where the streamlines originate, it is zero everywhere, so 

Since we also have V . q" = 0 from (2.5 b), and since q is not discontinuous, 
q" is constant everywhere. This constant must be zero to satisfy the 
condition (2.19 b) at infinity. Therefore V p  = 0. 

w = Vxq" = 0. 

Now from (2.13) one finds ja : 

(3.4a) 

Here Vo is a vector which is made up entirely of zero-order quantities, and 
which will be defined later. It is different inside and outside the ellipse. 

(1 + h 1 2 ) V P - d V P x  k+VoBa ja= - 
d 

= 0, (3.4b) 
0.j" = - (1+h12)V2p+Vo.VBa+BaV.Vo  

d 
VBa x k = jO. (3.4c) 

A, a@/as are continuous on C,. (3.4 d)  

F a =  k x  11 $ d A -  
i 

Ma = k JJ ( r . j ; )  dA-  r x ( jox  Ba) dA. 
i JJ  

(3.4e) 

(3.4f) 

Equations (3.1), (3.3) and (3.4) describe the present problem completely 
to the first order in the parameters S and Rm, and their solution will be 
presented in the next section. Readers who wish to do so may pass on to 
the sections entitled Results and Discussion. 

4. SOLUTION OF THE PERTURBATION EQUATIONS 

The solution of the perturbation equations is fairly straightforward 
but the algebraic details are quite lengthy. Here we shall omit most of the 
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algebra. Readers who are interested in the details may refer to Kemp & 
Petschek (1958). 

The basic equations to be solved are (3.1 b), (3.3 b) and (3.4b) for the 
electrostatic potentials +O, 4‘ and #P. They are actually Poisson equations 
because in each case the terms other than the Laplacian of the potential 
are known. Either they are given, as in the case of #O, or they are determined 
from zero-order quantities ; #‘ is found from j0 through Q’ by way of (3.3 e) 
and Ba from j0 according to (3 .4~) .  Once the various 4 are found the 
currents can be obtained from (3.1 a), (3.3 a) and (3.4a) and then the forces 
and moments from (3.1 d, e), (3.3f, g) and (3.4e, f). 

In actual practice it turns out to be easier to proceed slightly differently. 
The zero order and first order in S cases satisfy identical differential 
equations and boundary conditions, except that #O is given while #’ must 
be determined, as pointed out above, from j0 through a’. Therefore, the 
solution of (3.1 b) and (3.3 b) as Laplace equations in 4 +I#, can be carried 
out simultaneously. Then the appropriate values of # can be inserted to 
complete the solution in each case, after #‘ is found from the zero-order 
solution. On the other hand, to find #P, equation (3.4b) is treated as a 
Poisson equation with Vo and Ba determined from zero-order quantities. 

The natural coordinate system to use is an elliptic one so we introduce 
elliptic coordinates 5, y by the transformation 
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z = x + i y  = reie = Eacosh(f+iq) = Eacosh [. (4.1) 
Here x, y are Cartesian coordinates parallel respectively to the major axis 2a 
and the minor axis 2b of the ellipse C, ( f  = c), and E is the eccentricity 
given by 

Each value of f defines a member of a confocal family of ellipses with foci 
at x = ~f: a€. On each ellipse y is an angle running from 0 on the positive 
x-axis to 27r. 

Since we deal with Laplace and Poisson equations we must have available 
solutions of Laplace’s equation in elliptic coordinates. The regions inside 
and outside the elliptical contour C,, denoted respectively by subscripts i 
and 0, must be treated separately. Furthermore, since the gradients of 4 
and # are physical quantities, they must be finite everywhere and vanish 
at infinity. Suitable solutions of Laplace’s equation, which can be found 
by separation of variable in the elliptic coordinates, are 

.s2 = 1 - h2, h = b/a. (4.2) 

W 

fi = uo + 2 urn cosh mf cos mq + p, sinh m f  sin my, (4.3 a) 
1 

W 

f o = yo + ~ f t  + Y ~ Y  + ~ p ,  Ey + 2 e-me(Ymcosmq + 8, sin my) (4.3 b) 
1 

where GC, /3, y, 6 are constants. 
With these solutions available it is only a matter of algebra to find 4 

in terms of # for the zero order and first order in S cases, while for #a some 
simple particular solutions must also be constructed. 
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Expressions for the zero order and first order in Spotentials, forces and moments 
As pointed out above, the zero order and first order in S equations for + 

are the same and may be handled together. According to (3.1 b) and (3.3 b) 
they both satisfy 

and the boundary conditions that, on C,, j ,  and +/as are continuous. 
In  both cases, j is also given by the same expression, (3.1a) and (3.3a). 

A solution to (4.4) is obtained by using (4.3 a) for +i+$i and (4.3 b) 
for 4,. The constants are found from the boundary conditions, and can 
be written in terms of the Fourier coefficients of a$Jaq on C,. If we write 

V2++IV2# = 0, (4.4) 

00 

(a#&), = A ,  -I- 2 A,  cos mq + C, sin mq, (4.5 1 
1 

the constants are 
Y f  = Y f q  = 0, Y ,  = A,, 

(4.6) 

(4.7 a) 
(4.7 b) 

A, = 1 + di + (1 + X)(tanh mc + coth mc), 
d i =  (1+A)2+~2. 

The constants tl, and yo are not significant and do not enter the equations. 
The current vector, both inside and outside C,, can be found from (3.1 a) 

or (3.3 a) by using (4.5) and (4.3), but is too lengthy to write here. When 
written in Cartesian vector components it has the form of a series, each term 
of which is the product of an exponential function of [ and a trigonometric 
function of q. 

The forces and moments are obtained from (3.1 d, e) or (3.3 f, g) and 
require the integration of ji d A  and r . j i  d A  over the inside of the ellipse. 
Because of the form of j i ,  both these integrands also involve only terms 
which are the product of a function of .$ and a function of q, so the integration 
is very simple. All but one term in each component vanishes because of 
the periodicity in q, and the results are 

F =  - 4 x , h % - Y l Y l ) e - C ,  (4.8 a) 

M = 4kna2E2y2e-&. (4.8 b) 
Now, in order to express F and M in terms of given parameters, it is 

only necessary to determine the Fourier coefficients A,  and C,, in the 
expansion of (a$/3q)e, as indicated in (4.5). 

Zero-order current, force and moment 

stream at angle a to the major axis of the ellipse: 

! 
a, = {A, K - C, [( 1 + X)coth mc + di])/m4, cosh mc, 
/3, = (A, [ (1 + h)tanh mc + di] + C, ~ ) / m 4 ,  sinh me, 

yme-mc = {A,K+ C,[1 + ( 1  +X)tanhmc]}/mA,, 
6,elllC = ( - A , [ l  + (1 +A)cothmc] + C,K>/~&, 

where 

For zero order the stream function is, of course, given as that of a uniform 

(4.9) t)O = y cos a- x sin a = a c(sinhf sin q cos cc - cosh .$ cos q sin a). 
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From (4.5) we see immediately that 
A: = Ck = 0, m # 1 ;  A: = bcosct, C,O = asinct. (4.10) 

When these are inserted into (4.6), the potential q 5 O  is completely determined 
(except for an additive constant which we shall ignore) by (4.3a) for 
4: + @ and by (4.3 b) for 4:. 

(4.11 a) 

(4.11 b) 

(4.12 a) 
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#: = yy e-%/a + S: e4y/b, 
q5: = e-f(yy cos r] + Sy sin r ] ) ,  

The current is likewise found from (3.1 a) to be 

j! = x1 y: e4/b + y1 S! ecC/a = j:! x1 +j$ y,, 

. (4.12b) .o - (xl y9 - y1 S?)(cos r] - e - 2 f )  + (x, 8: + y1 yy)sin 2r] 
2a E ( sinh2 E + sin2 r ] )  Jo - 

This shows that the zero-order current inside the ellipse is a constant with 
Cartesian components 

jioz = 7: e4/b = [ K  cos ct + sin ct( 1 + h + h-')]/A,, (4.13 a) 
j!", = 8: e-C/a = [ K  sin ct - cos ct( 1 + h + h)] /A, ,  (4.13 b) 

where A, is found from (4.7). 
Since jg is a constant, the calculation of the zero-order force and moment 

directly from (3.1 d, e) is simple: 
Fo = (k x $)Tab, Mo = 0. (4.14) 

These, of course, agree with (4.8). The lift and drag, normal and parallel 
to the stream velocity respectively, are easily found by resolving j: along 
Cartesian coordinates n and I in those directions (figure 1). If we write 

jg = llj: + n& (4.15) 
we find from (4.13) and (4.14) that 

Lo = Fo.n, = = .rrab[K+sinct~osa(h-~-h)]/A,, (4.16a) 

Do = Fo.1, = -.rrabj,% = .rrab[l+h+h~os~ct+h-~sin~ct]/A,. (4.16b) 
Discussion of these results is postponed to a later section. 

First order in S velocity and stream function 
To find the first order in S quantities one must know the stream function 

$'. This is determined by the vorticity Q' according to (2.17b). The 
vorticity is in turn determined from zero order quantities by (3.3c, e). 
These equations are 

(4.17 a, b) 

Qi- Q; = j : / l lv  on C,. (4.18) 
Equation (4.17 b) indicates that Q' is constant along zero-order streamlines, 
i.e. in the Z-direction, and is thus a function of n only. Equation (4.18) 
specifies the jump in Q' at the ellipse caused by the discontinuity there in 
the applied field. The zero-order (free stream) streamlines which do not 
pass through the ellipse suffer no jump in vorticity, and since they come from 

V2+' = - Q', (1,. 0)Q' = 0, 
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a region with no vorticity, they never have any. In other words, the vorticity 
is confined to the inside of the ellipse and to the wake. The wake is bounded 
by the zero-order streamlines just tangent to the ellipse. In the (2,n) 
coordinate system these streamlines are defined by 

(4.19) 

From (4.17) and (4.18), using (4.12a) for$, we find the vorticity inside 

n; = Wc- w ,n/4(N2-n2), = -2W,n/l/(N2-n2), (4.20aY b) 

n = -e N, N2 = a2(h2 cos2 a + sin2 a). 

the ellipse SZ; and in the wake Q; to be 

where the constants are 

Wc = - a2(hy& cos a + j& sin a)/N2, 

W, = a2h(j:sin a - ji", cos a)/N2 = - a2hjiz/N2. 

(4.20 c) 

(4.20 d) 

With the vorticity known, the stream function follows by a straight- 
forward superposition of the stream functions of elementary vortices of 
strength Q' dndl : 

(4.21) 

Here z = x + iy and Iz - Zl is the distance between the vortex and the field 
point. 

One convenient way to find t,h' from this formula is to first obtain 
q; = - (V#'),. The integral for (V#')f can be converted by integration 
by parts and use of the divergence theorem into an integral on C, with 
(C2d-Q;) in the integrand. Use of (4.20) then leads to 

The log term can be written in elliptical coordinates and expanded in a 
power series in exp[ - ( 5  + re)] and exp[ 5 ( 5 -  re)], the plus sign being 
used inside the ellipse and the minus sign outside. The integration on q 
is then easily performed and the result, in the (1,n) coordinates, is 

I - (1 - h)j,: cos a]  + nGct + (1 - h)j,l sin a]  
4. = - , (4.22a) 

l + h  zn 

qin = - ahe-Ejj;cos(T - a) +j!% sin(q -a)]/€.  (4.22 b) 

To  find f we can now integrate the relation qi = - a#'/aZ. First we 
qoL can be integrated with respect to 1 if we notice work outside the ellipse. 

from (4.1) that 

This integration determines except for an undetermined function of n, 
which must be found from the vorticity relation (4.17a), and from the 
boundary conditions on qio = a#&. This function turns out to be zero 
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outside the wake, but not inside it. The results for qio and $1 are 
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qol = ahe- ' [ j~s in (7 ) - - ) - j~~cos (~ -E)] /E+ 
outside the wake, (4.24) 
inside the wake, - 2 W,d(N2 - n2) + Io  

$1 = &W[j;;(e-28 cos 23 + 2[) +j;(e-25 sin 27) - 27))I + 
10 outside the wake. 

(4.25) inside the wake. 

Here t is an angle defined by 

n/NEsint ,  0 < t < +T for n > 0, #n < t < 2n for n < 0. (4.26) 

An entirely similar procedure, beginning with qin, and keeping in mind 
the continuity of q' on C,, leads to the velocity and stream function inside 
the ellipse : 

- Wv,v'(N2 - n2),  [jiOn + ( 1  - h)j:k sin a]  [ W, +jyt - ( 1  - h)j: cos E ]  -n  
l + h  l + h  Qil = 1 

(4.27) 

#; = +(nqL-Zq:J- hWvN2t+Ki (4.28) 
where Ki is a constant chosen so that $1 = $: on C,. I t  differs for n 5 0. 

As a check on the first order in S flow field, the velocities far from the 
ellipse can be found. Because Bernoulli's equation holds everywhere but 
in the wake the pressure can also be found far from the ellipse except in 
the wake. An application of the integral momentum theorem to a large 
circle then yields the force and moment on the fluid due to the first order 
in S flow field. It is found that this calculation exactly checks the zero-order 
force and moment. This shows the advantage of obtaining forces and 
moments from the body force, since to obtain them from the flow field 
requires a higher order calculation. 

First order in S force and moment 

Knowing #', the force and moment are found by returning to (4.8), 
where they are expressed in terms of y,, 6, and y2. To determine these 
constants according to (4.6), the coefficients A,, C,,, in the Fourier 
expansion of a#'/aq on C, must be found for m = 1, 2. 

When the 
expansion is written in the form of (4.5) we find that 

Since $' is continuous on C,, either $: or $: may be used. 

A; = - - 8 IV, Nhacoscr = (- g 8 w J p 1 ,  
3n 

8 
37r 

C i =  - - W,iVasinu = 

where (4.10) for the zero-order coefficients have been recalled. This 



Magneto-hydrodynamic f i w  across an elliptical solenoid 569 

result shows that F' is parallel to Fo, and proportional to it: 

The second-order coefficients, which determine the moment, are 

W, sin 2a - ___ 
l + h  

-4' - - ha2w*(hcos2a-sin2a), - 
2 -  l + h  

When these are inserted into (4.6) for y2e-2c, andthat into (4.8 b), we find that 

+ [1+ (1 +h)tanh 2c] Wt,sin2a- hf* ~ - h )  W c ] ] .  (4.30) 
1 + h  

'The quantities W, and Wc are defined in (4.20c, d) and Az in (4.7a). 
For a circle h = 1, and we see that M' = 0, as required by symmetry. 

First order in R, field and potential 
As has been pointed out before, to the first order in R, there is a perturbed 

magnetic field, rather than a perturbed Aow field as found to the first order 
in S.  This field is related to jo by (3.4 c), from which, since jf is a constant, 
it is easy to see that inside C, 

(4.31 a) 

Outside C,, jf = -C@ according to (3.1a) and (3.2). Using (4.11 b) 
€or (5," and (4.13) for yy and 8:, we find that 

(4.31 b) 

we use (3.4 b). The vector Vo, which is obtained 
from the expansion of (2.13), is given by 
Vod = (1 + 3h1)Vz,h0 + 2hI'T$O - 2K1vz,h0 x k - ~v(5' x k + 2j01[2h( 1 + M 2 )  + K']. 

(4.32) 

This is constant inside C, since all zero-order terms have been found to 
be constant there. Outside C, it is variable, but V.  Vo = 0, as can be seen 
from the definition (4.32). Therefore, @ satisfies the Poisson equation 

This equation is solved both inside and outside, using (4.3) as the comple- 
mentary solutions. The particular solutions are simple exponentials of 2( 
and trigonometric functions of 217, obtained using (4.31) and (4.32) and the 
zero-order quantities already found. The constants in the complementary 
solution are determined as before by matching? and +P/i37 on C,. This 
results in a set of simultaneous equations whose inhomogeneous parts 
(which come from the right side of (4.33)), have only constant terms, and 
terms second harmonic in 7. The determinant of the coefficients is diA,, 
which does not in general vanish and we conclude that only or:, z, y: and 
the coefficients of the second harmonic terms are non-vanishing. 

Ba = - j:u x + jk.v. 

BE = e-c(y:sinq -8ycosq) = a e C - ~ ( l ~ ~ ~ s i n r - j ~ ~ c o s r ) ) .  

T o  find the potential 

v2p = - vo . VB"/ (1 + W). (4.33) 

F.M. 2 0  
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The resulting expressions for qP are 

4: = Ka2E2(cosh 2[ + cos 271) + ol; cosh 2[  cos 271 + ,l3; sinh 2[ sin 271, 

4: = +a2E2(Kg e-2f - K, cos 271 + K,  sin 271) + e-2'(y; cos 271 + 8: sin 27) + yg. 

(4.34 a)' 

(4.34 b) 

The constants K,  K, and K ,  come from the right-hand side of (4.33) and 
are defined below (5.9). The constant KE, arising from the same source, is 

K f  = 2(a€)-2(yy + 8y)K + ( c ~ e ) - ~ ( y :  cos E - 8: sin E ) .  

y;, E: and & are related to A:, A; and Cg by (4.6) ; the latter two constants 

are defined below (5.9), and 

(1 + X)abK, - ab@ U ,  - ji", U J  
2di 

with U also defined below (5.9). y; and 8; are given by 

a2E2( 1 - h ) K ,  
2(1 + h )  ' A: = + 

y; e-2c = a; cosh 2c + Qa2E2(K + K,), 
8; e-2c = & sinh 2c - Qa2e2Ks. 

First order in Rm current, force and moment 

for B". Inside C, the result is 
The current is found by inserting (4.34) into (3.4a) and using (4.31) 

- jt = K[(  1 + h ) ( x ,  x + y l y )  + K ( - x l y  + y1 x ) ] / 2 d i  + T( -j$ x +j&y) /d ,  + 
-k (4/a2e2di){ [ (1 -k A)$ - K&] ( X I  X - y1y) f 

f [( 1 +A)& + K E ; ] ( X l y  + y1 X)}. (4.35)' 
The current outside could be found also, but we will now show that the 
force and moment do not depend on it. 

The second integral 
in each formula can be simplified by using the relation j0 = V x Ba. The 
integrands become 

Use of vector integral theorems for the divergence and curl then reduce 
the area integrals to line integrals which can easily be shown to vanish 
because B" is continuous across C, and vanishes as [- m (see (4.31 b)), 
The formulae for force and moment therefore reduce to 

The force and moment are given by (3.4e, f). 

j0 x Ba = - $V(Ba)2, r x (jo x B") = gV x r(B")2. 

They depend only on j;, not on the outside current j;. 
The integrations are very simple. Since jq is linear in w and y ,  the 

symmetry of the ellipse indicates that 

Fa = 0. (4.36) 
The only contributions to the moment come from x2 and y 2  terms which 
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arise when r . j; is formed from (4.33). After some reduction, the result is 

M " = k  >. 
U4 T(1- h2) h (r,$..$ + r.&&) + A$ K + c$ [ 1 + (1 f A)%/( 1 + h2)] 

4 (2 di A2 

(4.37) 
@, which is closely related to VO, is defined below (5.9). Again the moment 
vanishes for a circle (h = l), which is required by symmetry. 

5 .  RESULTS 
The results for force and moment to the zeroth and first order in both 

S and R, are collected here for convenience of reference and discussion. 

Zero order 
Fo = llD0+n,Lo. 

From (4.2), (4.7) and (4.16) the lift and drag are 
Lo = 7rabjil = n-a2h[K + 4 sinZc((h-l- h) ] /A , ,  
Do = - 7rabj:n = na2h [ 1 + h + h cos2 M + h-I- sin2 a]/A1, 

(5.2a) 
(5.2 b) 

where 

(5.3) A, = (1  + A )  ~ ( l + h ) 2  + h 2 + K 2 *  

h 
Also from (4.14) we recall that 

Mo = 0. (5.4) 

First order in S 
From (4.29) and (5.2b) the force is related to Fo by 

8 ah[l + h + h c o s 2 ~ + h - l s '  mza] - - - _  8 ahFOjiO, 
37r l / ( h 2  cos2 01 + sin2 M) 3n- d ( h 2  cos2 M + sin2 M) 0 

F' =-  

From (4.30), (4.20c, d) and (4.13) the moment can be put in the form 

M" 
k 

a 4 4  1 - h)( 1 + h)3 - _  - _  
8A1 A,( 1 + h2) 

where 

First order in R,n 
From (4.36) we may recall that 

F" = 0. (5.8) 
2 0 2  
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The moment is too lengthy to write out in one expression. 
it is 

M a  -- - 7ru4(l-h2)  h ~ ~ z . j & + ~ & j ~ z  + A,K+C$ [1+(1 +A)2h/(l+h2)] 

where 
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From (4.37) 

k 4 (2 (1+h)2+K2 A2 

(5.9) 

a - a2(h2jj,0, U ,  -j& U,) - ~ K U ~ E ~ K  u2e2K, - +- 4 '  A, - 2( 1 f A)' + 2K2 

u=  [(I + + K z ] v ~ - ~ ~ ,  - v = [ ( 1  + h12)2 + K2]]-'{ (1  + 3X1)V#O + 2h1V4' - 2K1V#O X k - 
- K V ~ O  x k + 2j01[2h( 1 +Ma) + ~ ~ 1 3 ,  

K, = (ur)-1(6! cos or + y: sin or), K, = (ae)-l(6: sin or - 7; cos CI),  

K = -V?.kxj:/(l+X), 
- 

yye-' ~cosor+sinor[ l+h+h-~]  -- - ~sinor-cosor[~+h+h] 
-- , 

A, 
- 

9 b A1 U 

V# = xl(yye-c/a) + y,(8ye-e/b), V#O = - x1 sin or + y, cos a,  

j p  = x, j:: + y1& = x,(yy e- , /b )  + y,(S? e-, /u).  

For the special case of K = A = 0, Mu reduces to the following very 
simple expression 

(5.10) 

6. DISCUSSION 
The problem that has been considered basically contains six parameters ; 

the interaction parameter S, the magnetic Reynolds number R,,, the Hall 
coefficient K, the ion slip coefficient A, the ratio of minor to major axis of the 
ellipse h, and the angle of attack or. Since the analysis has been carried 
sut as a perturbation in S and R,, the results for each order, as given in the 
previous section, are functions of the four parameters K ,  A, h and or. 
Discussion of these four-parameter functions is, necessarily, limited to 
consideration of certain limiting cases. 

Zero order 
T o  the zero order the gas current distribution and the resulting forces 

are computed from the undisturbed flow and magnetic field. Since to 
this order the hydrodynamic properties of the fluid do not enter, the zero- 
order solutions are not restricted to incompressible flows. 

As may be seen from (4.12a) both the magnitude and the direction 
of the gas current inside the ellipse are independent of position. While 
this is true for all values of the parameters K, A, h and or, it cannot be 
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generalized to all closed contours, but seems to be a property peculiar to  
ellipses. It can easily be demonstrated, for example, that it would not 
hold for a rectangular cross-section. 

The fact that the zero-order moment vanishes for all ellipses follows 
directly from the fact that the current and, therefore, the body forces on 
the fluid are uniform throughout the ellipse. 

Let us consider first the special case of high densities where K and h 
are both zero and discuss the force on ellipses one of whose axes is parallel 
to the flow (a = 0 or in). Equation (5.2a) shows that the lift is zero, and. 
equation (5.2 b) may be written in the dimensional form 

(6.1) 

where H is the ratio of the lengths of the axes perpendicular and parallel 
to the stream; i.e., 

H = h for M = 0, H = h-l for M = 4,. 
The factor preceding the bracket is the drag the ellipse would have if there 
were no electric field to impede the current flow, i.e. if the current in the 
ellipse were uqoBo. The factor in brackets is then the reduction in drag 
due to  the fact that an electric field is required to close the current loops 
outside the ellipse. In other words, it is a measure of the electrical 
impedance seen by the e.m.f. which is generated inside the ellipse as a result 
of the motion of the gas through the magnetic field. For ellipses of fixed 
area the drag increases monotonically as the length of the axis perpendicular 
to the stream increases. 

The case of general angle of attack for K = h = 0 may be considered 
as the superposition of flows parallel and perpendicular to  the major axis. 
Since the problem has been linearized, the total force is the vector sum of 
the forces resulting from the component flows. Because the drag per unit 
velocity is larger for the flow perpendicular to the major axis than it is for 
the flow parallel to it, the total force will not be a pure drag force but will 
also have a lift component. 

In  figures 2 and 3 the drag and lift for ellipses of different fineness 
ratios h have been plotted as a function of angle of attack from (5.2). The 
perimeter P has been used as the representative length 9 in this plot, 
so that the forces are compared for ellipses of the same perimeter. This 
choice was motivated by the fact that for a given magnetic field and a given 
mass of copper in the solenoid the joule dissipation required in the copper 
is a function only of the perimeter. On this basis, in addition to the factor 
due to the change in impedance with shape discussed above, the drag 
decreases as the ellipse becomes thinner because the area decreases. 

The lift is zero for a circle because of symmetry, as mentioned above, 
and also zero for a very fine ellipse because the area goes to zero. I t  has 
a maximum for a fineness ratio of about 0.3. The ratio of lift to drag becomes 
infinite for infinitely thin ellipses at small angles of attack. At this point, 
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of course, both the lift and the drag themselves approach zero. For a 
reasonable fineness ratio the lift-drag ratio is not large. For example, for 
a fineness ratio greater than 0.2 the lift is less than the drag at all angles of 
attack. 
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Figure 2. Non-dimensional zero-order drag Do = Do"/oqoP2(B0)2 (based on peri- 
meter, 2 = P )  zis angle of attack 01 for varying fineness ratio h ;  plotted from 
equation (5.2 b) with Hall and ion slip coefficients K and h equal to zero. E is 
the complete elliptic integral of the second kind. 

In order to describe the effect of the Hall and ion slip coefficients K and h 
let us consider first a circular solenoid, h = 1. The Hall coefficient tends 
to produce a current in the stream direction. The cross product of this 
current with the magnetic field produces a lift even for a circle. Since the 
sign of the Hall current is independent of the sign of the magnetic field, 
the sign of the lift will depend on the sign of the magnetic field. Lift and 
drag have been plotted as a function of K in figure 4 from (5.2). In drawing 
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this graph we have assumed that 

which is a limiting case of (A5). 
h = K 2 / 5 0 0 ,  

. O l F  

,010 

L O  
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0 . S I ~  2 (1 Hh I -h  
I< = x =  0 ( 4 E ) 2  2 l i h  
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h.0.3 1 

Q ,  DEGREES 

Figure 3.  Non-dimensional zero-order lift Lo = Lo*/oqoP2BoZ (based on perimeter, 
9 = P )  vs angle of attack 01 for varying fineness ratio h ;  plotted from equation 
(5.2 a) with Hall and ion slip coefficients K and A equal to zero. E is the com- 
plete elliptic integral of the second kind. 

As K increases from zero the lift initially increases and then decreases. 
However, both the drag and the total force decrease monotonically. 
Lift-drag ratios up to 7.9 can be obtained, but these large ratios occur when 
the total force has been reduced by almost a factor of ten compared with 
the case K = 0. 
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As can be seen by looking at the general formula for zero-order drag 
(5.2 b) the reduction in drag associated with K depends on the geometry. 
It becomes less significant for flat ellipses. This reduction can probably 
also be made less significant by the use of electrodes whose potentials are 
adjusted to inhibit the flow of the Hall current. Non-uniform conductivity 
in the flow field, which would be encountered in an actual flight case, might 
also tend to produce a similar effect. 

K 

Figure 4. Non-dimensional zero-order lift Lo and Do vs Hall coefficient K for a. 
circle, h = 1 ; plotted from (5.2 a, b) with ion slip coefficient A = ~ ~ / 5 0 0 .  

It is instructive to examine two limiting values of K and h for general 
Equation (6.2) shows that K can be large compared with unity 

This case will be approximated by K +  co, h = 0. 

In the first case, the lift is much larger than the drag. The dimensional 

ellipses. 
while h is still small. 
In the second case examined, both K +  CO, A +  co. 

form of the lift may be obtained from (5.2a) as 

= ( NI eqO)BO.rra"b". (6.3 1 a$ B 'na*b" LO" = 
K 

In  order to obtain (6.3), equations (A2b) and (2.8a) have been used to 
define K.  Since the current inside the ellipse was shown to be constant, 
the force is the product of this current, the (constant) magnetic field, and 
the area. Thus, the term in parentheses in (6.3) must be the current. 
In order to produce this current the difference between the ion and electron 
velocities must be qo. For h = 0, (A 1 b) shows that the ion velocity is equal 
to the gas velocity qo. The mean electron velocity must therefore be zero 
inside the ellipse. This is physically reasonable since, for K large, the 
electrons make tight spirals around the magnetic field lines. When the 
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electron suffers a collision the centre of the spiral is moved by something 
less than the radius of the spiral. Since in this region the radius of the 
spiral is small and collisions are relatively infrequent, the electrons are 
practically stationary in the magnetic field. We may conclude that in the 
limit of K large but h still small the current may be approximated by assuming 
that in the magnetic field the electrons are stationary and the ions move 
with the gas velocity. 

In the limit of both K and h large the drag becomes the dominant force. 
Using equations (A2c) and (2.8 b), we find that the expression for zero- 
order drag becomes 

(6.4)) 

From the definition of eIN,  the term in parentheses is the frictional force 
due to collisions between ions and neutrals when their relative velocity is qo. 
In this case, then, the ions are held almost stationary in the magnetic field. 
I t  should be noted that in this limit the drag becomes independent of the 
magnetic field strength. 

When the ion slip term is significant, the ion velocity is appreciably 
less inside than outside the ellipse. The assumption of uniform conductivity, 
which we have used throughout, implies that the ion concentration is uniform 
in space. In  order to satisfy the continuity equation for the ions under 
these two conditions, a large portion of the ions entering the ellipse must 
recombine with electrons near the boundary. Also, where the streamlines 
leave the ellipse a corresponding number of ions must be produced. If 
the rates of ionization and recombination are sufficiently rapid, this require- 
ment can be satisfied. The rapid rate of ionization would maintain thermal 
equilibrium everywhere. The uniform temperature which is implied by 
the assumption of incompressible flow then assures uniform degree of 
ionization. However, since ion slip occurs at low densities, the rate of 
recombination may not be sufficiently rapid to give thermal equilibrium 
everywhere. In this case the degree of ionization inside the ellipse would 
be greater than outside. Equation (6.4) would then suggest that the drag 
would be higher than one might expect assuming a uniform degree of 
ionization. The reduction in drag due to ion slip may, therefore, not be 
as large as the present calculations indicate, if the rates of ion recombination 
are not fast enough. 

First order in S 
To the first order in S we have calculated first the modified flow field 

and then the resulting forces and moments. The perturbation velocity 
perpendicular to the free stream velocity is given in (4.22a). The parallel 
component inside and outside the ellipse is given in (4.27) and (4.24)- 
As was mentioned previously, for a circle the external flow outside the wake 
may be represented by a point source and vortex at the origin. 

The gas pressure may be computed by substituting the first-order 
velocity and zero-order current and magnetic field into the momentum 
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equation (2.5a). It is interesting to note that in general the pressure 
gradient inside the ellipse is a constant, and its component in the free 
stream direction is negative. For a circle this pressure gradient is equal 
to one-half the zero-order magnetic force. For an ellipse, it is more 
complicated and is not in general parallel to the magnetic force. 

The  first-order forces (5.5) are of opposite sign to the zero-order forces. 
T h e  fact that the forces must be reduced by the first-order terms is obvious 
since the flow velocity in the ellipse is reduced by the magnetic field. It 
is interesting to note, however, that the calculation shows that the first-order 
force is exactly anti-parallel to the zero-order force. 

The  magnitude of the first-order force may be used as a crude indication 
of the range of validity of the perturbation procedure. The  ratio of first 
to zero-order forces is, from (5.5), 
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8 DOS 
-- - - - (h2 cos2 cc + sin2 cc)-1/2 - F'S 
FO 3 9  a 

The  term in parentheses may be interpreted as a drag coefficient based 
,on the major axis. If we take the square root as about unity, the first order 
in S produces about a 25% correction when the zero-order drag coefficient 
is unity. One would therefore expect that the terms which have been 
calculated are insufficient beyond this point. It should be remembered 
that when K and h are not zero the drag coefficient may be small for fairly 
large values of S. T h e  first-order terms become comparable with the zero- 
order terms only when the drag coefficient becomes comparable with unity, 
not when S becomes comparable with unity. 

T h e  moment, which vanished to  the zero order for ellipses, appears in 
the first-order approximation. I n  figure 5 the moment for K = h = 0, 
has been plotted from (5.6). The  moment has been plotted in terms of the 
non-dimensional moment arm M*/Fo*L? divided by the zero-order drag 
coefficient 2SD0. The  plot therefore compares the moment arm for different 
ellipses with the same drag. It will be noted that the moment is zero at 
angles of attack of both 0" (major axis parallel to free stream) and 90" (minor 
axis parallel to  free stream). At 0" the neutral point is unstable, so that the 
ellipse would orient itself at the other neutral point with the major axis 
perpendicular to the free stream. The  sign of this moment may be explained 
crudely by noting that the flow through the downstream parts of the ellipse 
has already been decelerated somewhat in the magnetic field. The  flow 
velocity is then higher in the upstream part of the ellipse and therefore 
the forces are larger there. A small angle between the major axis and the 
free stream direction therefore produces a moment which tends to increase 
the angle of attack. 

One may to 
some extent regard the Hall effect as introducing another angle into the 

For general K and h the moments become quite complex. 
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problem, the angle between the current and the electric field in a coordinate 
system moving with the gas. T h e  introduction of this angle tends to 
change the angle of attack for a given moment. I n  order to illustrate this 
effect the stable angle of attack for an ellipse with h = & has been plotted 
in figure 6 as a function of K. This was calculated numerically from (5.6), 
.and (6.2) was used to relate K and A. It will be seen that for K both very 

2 0  ,I 

[ l+h2 + 2 h2/( h2 cos2a+sin2a)] sin 2 a 

j ~ 2 c o s 2 a + s i n 2 a  {l-[(l-h)/(l+h)]cos 2 a  
.I 5 

- -R'  .I 0 

c; 

0 5  

0 

a, DEGREES 
Figure 5 .  Non-dimensional first-order in S moment arm R' = M ' / 2 F o  divided by 

zero-order drag coefficient Co = Do/&poqoa9 = 2SD0 vs angle of attack (Y for 
varying fineness ratio h. Plotted from equations (5.6) and (5.2 b) with Hall 
and ion slip coefficients K and h equal to zero. 

small and very large the stable angle is 90". 
stable angle is reduced to  almost 45". 
stable angle would be 45". 
on the ellipticity. 
approach one another asymptotically. 

For intermediate values the 
I n  the limit K +  co and X = 0 the 

For small values of K the stable angle depends 
However, for large K the curves for different ellipses 

First order in R, 
The  first-order calculations in R, principally determine the changes in 

the magnetic field caused by the flow. T h e  change in field is given by 
(4.31 a) and (4.31 b). As a result of the uniform zero order current (4.12 a) 
inside the ellipse the field inside varies linearly with position, the field 
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strength increasing toward the downstream side. For K and h zero the- 
magnitude of the field change across the ellipse is roughly R,, times the 
zero-order field. In this case the perturbed field is small compared with 
the applied field for R, less than unity. For K and X not zero the current 
and therefore the field change is reduced and the ratio of perturbed to. 
applied fields remains small to larger values of R,. 
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Figure 6. Angle of attack a8 at which ellipse has zero moment to the first order in S, 
and is stable with respect to that moment, zis Hall coefficient K for two fineness 
ratios h = 4, $. Plotted from equation (5 .6 )  with ion slip coefficient 

= K 2 / 5 0 0 .  

The fact that the field variation is linear immediately implies that the 
first-order force is zero (5.8). The increase in force on the downstream 
side of the ellipse due to the increased magnetic field is exactly balanced 
to this order by the reduced force on the upstream side. 

The moments to this order for K = X = 0 have been plotted in figure 7, 
from (5.9). The shape and magnitude are very similar to that for the first 
order terms in S. The sign of this moment is, however, opposite to that 
of M'. Therefore, for Rm somewhat larger than S the stable angle of 
attack for the ellipse is 0". This may be seen qualitatively from the argument 
above that the force on the downstream end is larger than on the upstream 
end. 
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Figure 7. Non-dimensional first-order in R, moment arm Ra = Ma*/_LPFo divided 
by zero-order drag coefficient Co = Do/*pqo2 9 = 2SDo zw angle of attack a for 
varying fineness ratio h. Plotted from equations (5.10) and (5.2 b) with Hall 
and ion slip coefficients K and h equal to zero. 

Concluding remarks 

This analysis has been carried out as a step toward the solution of the 
more complicated situation which exists in hypersonic flight. Further 
work in this direction is presently under way at the AVCO Research 
Laboratory. Dr Frank Fishman is considering theoretically the corre- 
sponding perturbation problem for supersonic flow and Mr John Lothrop 
has begun an experimental investigation of the supersonic case utilizing a 
shock tube. 
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APPENDIX A. GENERALIZED OHM'S LAW 

The  electrical conductivity of a partially ionized gas in the presence 
of a magnetic field has been calculated by Schluter (1950, 1951). A review 
of this work with some extensions and some algebraic corrections is given 
by Finkelnburg & Maecker (1956). Very briefly Schluter's approach 
consists of considering the separate momentum equations of the component 
gases, i.e. neutrals, ions, and electrons. These equations include, in 
addition to the acceleration, pressure gradient, and electromagnetic force 
terms, a frictional type of force arising from collisions between different 
components of the gas. This frictional force is proportional to the difference 
in mean velocity of the components. These three momentum equations 
may be combined to give the overall gas momentum equation (2.1 a) and 
in addition the mean velocities of the ions and electrons may be determined 
in  terms of the local flow properties and their gradients. Instead of using 
the electron velocity explicitly it is more convenient to use the difference 
between electron and ion velocity, which is essentially the current. 

The  result (equations (51.17) and (51.18) in Finkelnburg & Maecker 
(1956) for the case of arbitrary degree of ionization of the gas is quite 
complex. However, for the special case of very small degrees of ionization 
where the partial pressures of the ions and electrons may be neglected 
the equations for current and ion velocity may be reduced to the form 

J -  ." - a(E" + q; x B" - K"j" x B"), 

q: = q* +A*j" x B", (A 1 b)  
where q: is the mean ion velocity, and u, K" and A" are coefficients which 
describe the gas conductivity. I n  terms of kinetic theory parameters 

(A 2 a) 
NI e2 u =  - 
N N  EEN + N I  € I E i N N  ' 

K" = l /N ,e ,  (A2b)  

A" = l /NINNcILv,  (A2c)  

where the subscripts N, I ,  and E refer to neutrals, ions, and electrons, 
respectively, N is the number density of particles, e is the absolute value 
of the electronic charge and eik is a coefficient which describes the frictional 
force between species and is given by 

where k is Boltzmann's constant, T is the temperature, qii is the particle 
mass and QjI; is the elastic collision cross-section. 
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The reduction of the general equations to the form given in ( A l )  is 
not completely straightforward since it involves neglecting terms with 
gradients of the dynamic pressure of the ions. In the case being considered 
the discontinuous change in magnetic field produces a discontinuous change 
in ion velocity according to (A 1 b). I n  the immediate vicinity of this 
discontinuity the above equations are therefore not valid. The  width of 
this region would, however, be of the order of one mean free path and, 
therefore, very small compared with the characteristic dimensions of the 
solenoid. Furthermore the total force due to the current resulting from the 
terms which have been dropped cannot be larger than the dynamic pressure 
of the ions. The  equations ( A l )  are, therefore, valid everywhere except 
in the immediate vicinity of the discontinuity in magnetic field and the 
discrepancies there do not produce significant effects on the flow field as 
a whole. 

The  generalized Ohm's law given in (2.3) may be obtained by direct 
substitution of (A 1 b) in (A 1 a). The  physical significance of the coefficients 
is, however, more easily described in terms of the equations (Al) .  By 
considering the case of zero magnetic field strength it is clear that a is the 
electrical conductivity in the absence of a magnetic field. From (A 1 b )  
it may be seen that the coefficient, AX, determines the magnitude of the slip 
velocity of the ions relative to the neutrals. The  term involving K" gives 
rise to a current which is not parallel to the electric field when observed 
from a coordinate system moving with the ion velocity. Using terminology 
carried over from solid state physics this current is usually referred to 
as a Hall current. 

Using (A2) and (A3) it can easily be shown that the non-dimensional 
Hall coefficient K, given by ( M a ) ,  is the product of the angular frequency 
at which the electrons spiral around the magnetic field lines and the mean 
free time between collisions of electrons with ions or neutrals. In other 
words the Hall coefficient is 27r times the average number of revolutions 
an electron experiences between collisions. The  magnitude of the Hall 
coefficient depends, of course, on the physical conditions being considered. 
However, to obtain an estimate of the magnitude we will consider the case 
where the magnetic pressure Boa/2p is equal to the gas pressure p". This 
condition is equivalent to  taking both SIR, and p*/pqoa of order unity. 
Using this condition and further assuming that the degree of ionization 
is so low that the second term in the denominator of equation (A2a)  is 
negligible and taking QBs = 1 x cm2 one finds 

where pSL is the sea-level density of air. From the above formula it is clear 
that the Hall currents must be considered in the density regions that are 
of interest for high speed flight applications of magneto-hydrodynamics. 

The ion slip coefficient h may be expressed in terms of the Hall coefficient 
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where the masses of the ions and neutrals are taken as the molecular weight 
of N ,  and it is assumed that QIJQEN = 3. As pointed out by Patrick 
(1956), under typical flight conditions E I E / E E N  is of the order of 500. For 
,degrees of ionization less than 2 x the term in brackets may therefore 
be taken as unity. 
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